Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Glusker, J. P., Zacharias, D. E. \& Carrell, H. L. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 68-74.
Golič, L. \& Leban, I. (1987). Acta Cryst. C43, 280-282.
Hamiloton, W. C. (1959). Acta Cryst. 12, 609-610.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Kouić-Prodić, B. \& Ružić-Toroś, Ż. (1982). Acta Cryst. B38, 2948-2951.
Norris, C. P., Berke, H. \& Lombardino, J. G. (1985). J. Heterocycl. Chem. 22, 837-840.

O'Connell, A. M. \& Maslen, E. N. (1967). Acta Cryst. 22, 134-145.
Orazi, O. O., Corral, R. A. \& Bravo, R. D. (1986). J. Heterocycl. Chem. 23, 1701-1708.
Rivero, B. E., Bianchet, M. A. \& Bravo, R. D. (1991). Acta Cryst. C47, 2501-2503, 2674-2676.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1985). SHELXS86. In Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. GodDard, pp. 175-189. Oxford Univ. Press.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1993). C49, 546-548

Structure of 6-Chloro-3,4-dihydro-1H-2,3-benzothiazine 2,2-Dioxide

By Blas E. Rivero* and Mario A. Bianchet \dagger
Departamento de Física Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, CC. 67 (1900), La Plata, Argentina

And Rodolfo D. Bravo

Departamento de Química Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, CC. 67 (1900), La Plata, Argentina
(Received 6 September 1991; accepted 29 June 1992)

Abstract

C}_{8} \mathrm{H}_{8} \mathrm{ClNO}_{2} \mathrm{~S}, \quad M_{r}=217.68\), monoclinic, $P 2_{1} / c, a=10.860(2), b=9.849(9), c=9.360(3) \AA$, $\beta=113.00(5)^{\circ}, \quad V=921(1) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.569 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71073 \AA, \quad \mu=$ $5.94 \mathrm{~cm}^{-1}, F(000)=448, T=293 \mathrm{~K}, R=0.043$ for 1061 observed reflections. The heterocyclic ring adopts a half-chair conformation. There are two hydrogen bonds between molecules related by (i) $1-$ $x, \quad 1-y, \quad z \quad\left[\mathrm{~N}(3) \cdots \mathrm{O}\left(1^{\mathrm{i}}\right) \quad 3.047(5), \quad \mathrm{H}(31) \cdots \mathrm{O}\left(1^{\mathrm{i}}\right)\right.$ 2.22 (5) \AA and $\left.\mathrm{N}-\mathrm{H} \cdots \mathrm{O} 156(4)^{\circ}\right]$ and (ii) $1-x, 1-$ $y, \quad 1-z \quad\left[\mathrm{C}(4) \cdots \mathrm{O}\left(2^{\mathrm{ii}}\right) \quad 3.42(5), \quad \mathrm{H}(41) \cdots \mathrm{O}\left(1^{\mathrm{ii}}\right)\right.$ $2.494(6) \AA$ and $\left.\mathrm{N}-\mathrm{H} \cdots \mathrm{O} 163.4(4)^{\circ}\right]$. There is a short contact between $\mathrm{Cl}(1)$ and $\mathrm{O}(2)$ of the molecules related by (iii) $1+x, y, 1+z\left[\mathrm{Cl}(1) \cdots \mathrm{O}\left(2^{\text {iii }}\right)\right.$ 3.050 (3) \AA].

Experimental. The synthesis of the title compound has been reported previously (Orazi, Corral \& Bravo, 1986). Crystals were obtained by slow cooling (330300 K) of a chloroform solution. The crystal used for data collection had dimensions $0.1 \times 0.15 \times 0.2 \mathrm{~mm}$.

^[* Member of Carrera del Investigador Científico, CICPBA, Argentina. \dagger Present address: Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, School of Medicine, 725 N . Wolfe St, Baltimore, MD 21205, USA.]

Intensities were measured with a Nonius CAD-4 diffractometer in $\omega-2 \theta$ scan mode, with scan width $(0.80+0.35 \tan \theta)^{\circ}$ and scan speed $2.50-6.67^{\circ} \mathrm{min}^{-1}$, and using graphite-monochromated Mo $K \alpha$ radiation. Unit-cell parameters were determined from a least-squares fit of the setting angles of 23 reflections with $20.5<2 \theta<42.5^{\circ}$. Data were collected for -1 $<h<11,0<k<11,-12<l<12$, and to $\theta_{\max }=$ 23°. One standard reflection (32̄̄) varied by $\pm 1.9 \%$ of the mean intensity over data collection. 2064 reflections were measured, of which 1616 were unique ($R_{\mathrm{int}}=0.011$) and 1061 were considered unobserved on the criterion $I>3 \sigma(I)$. Lorentzpolarization and geometrical absorption corrections were applied (for the latter the average transmission factor was 0.88 , with maximum 0.91 and minimum 0.83 for $\overline{1} 20$ and $\overline{1}, 11,0$ reflections, respectively). The structure was solved by (centrosymmetric) direct methods and the model refined by least squares. The H atom of the NH group was placed at a position based on that found in a difference synthesis and refined with a particular isotropic thermal parameter. Other H atoms were placed geometrically ($\mathrm{C}-\mathrm{H}$ $0.96 \AA$), and constrained to ride on their C atoms, with two common isotropic thermal parameters for CH_{2} and fused-benzene H atoms, respectively. Full-

Table 1. Fractional positional parameters for non-H atoms and equivalent isotropic thermal parameters (\AA^{2})

$B_{\text {eq }}=(4 / 3) \sum_{i} \sum_{j} \beta_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$ (Hamilton, 1959).				
	x	y	z	$U_{\text {eq }}$
C(1)	0.6312 (3)	0.7009 (4)	0.2116 (4)	4.1 (1)
S(2)	0.4976 (1)	0.5973 (1)	0.2067 (1)	3.88 (3)
O(1)	0.4000 (3)	0.5872 (3)	0.0513 (3)	5.40 (8)
$\mathrm{O}(2)$	0.4551 (3)	0.6401 (3)	0.3259 (3)	5.05 (9)
N(3)	0.5681 (3)	0.4509 (3)	0.2555 (4)	4.03 (9)
C(4)	0.6783 (4)	0.4451 (4)	0.4096 (4)	4.2 (1)
C(5)	0.8900 (4)	0.5523 (4)	0.5848 (4)	4.6 (1)
C(6)	0.9765 (4)	0.6600 (5)	0.6333 (4)	5.0 (1)
C(7)	0.9530 (4)	0.7774 (6)	0.5537 (5)	6.1 (2)
C(8)	0.8392 (4)	0.7895 (4)	0.4199 (5)	5.2 (1)
C(9)	0.7500 (4)	0.6835 (4)	0.3641 (4)	3.8 (1)
C(10)	0.7747 (3)	0.5633 (4)	0.4492 (4)	3.68 (9)
$\mathrm{Cl}(1)$	1.1228 (1)	0.6411 (2)	0.8018 (1)	7.47 (5)

Table 2. Bond distances (\AA) and bond angles $\left({ }^{\circ}\right)$

$\mathrm{C}(1)-\mathrm{S}(2)$	$1.760(4)$	$\mathrm{C}(1)-\mathrm{C}(9)$	$1.515(4)$
$\mathrm{S}(2)-\mathrm{O}(1)$	$1.430(2)$	$\mathrm{S}(2)-\mathrm{O}(2)$	$1.428(4)$
$\mathrm{S}(2)-\mathrm{N}(3)$	$1.613(4)$	$\mathrm{N}(3)-\mathrm{C}(4)$	$1.472(4)$
$\mathrm{N}(3)-\mathrm{H}(31)$	$0.88(5)$	$\mathrm{C}(4)-\mathrm{C}(10)$	$1.512(5)$
$\mathrm{C}(5)-\mathrm{C}(10)$	$1.396(4)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.345(7)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.393(5)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.371(6)$
$\mathrm{C}(7-\mathrm{C}(8)$	$1.379(6)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.381(5)$
$\mathrm{C}(6)-\mathrm{Cl}(1)$	$1.757(3)$		
$\mathrm{S}(2)-\mathrm{C}(1)-\mathrm{C}(9)$	$110.4(3)$	$\mathrm{S}(2)-\mathrm{N}(3)-\mathrm{C}(4)$	$115.2(3)$
$\mathrm{S}(2)-\mathrm{N}(3)-\mathrm{H}(31)$	$110(3)$	$\mathrm{C}(4)-\mathrm{N}(3)-\mathrm{H}(31)$	$117(3)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$121.7(5)$	$\mathrm{C}(1)-\mathrm{S}(2)-\mathrm{O}(1)$	$110.1(2)$
$\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{C}(10)$	$115.5(4)$	$\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	$119.0(3)$
$\mathrm{C}(1)-\mathrm{S}(2)-\mathrm{O}(2)$	$108.9(2)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	$119.7(4)$
$\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	$122.5(3)$	$\mathrm{C}(4)-\mathrm{C}(10)-\mathrm{C}(5)$	$116.9(3)$
$\mathrm{C}(1)-\mathrm{S}(2)-\mathrm{N}(3)$	$102.5(2)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$121.6(3)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$118.5(3)$	$\mathrm{O}(1)-\mathrm{S}(2)-\mathrm{O}(2)$	$118.6(2)$
$\mathrm{O}(1)-\mathrm{S}(2)-\mathrm{N}(3)$	$107.9(2)$	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{Cl}(1)$	$119.8(3)$
$\mathrm{C}(4)-\mathrm{C}(10)-\mathrm{C}(9)$	$123.6(3)$	$\mathrm{O}(2)-\mathrm{S}(2)-\mathrm{N}(3)$	$107.8(2)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$119.1(4)$	$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	$119.3(3)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{Cl}(1)$	$118.5(3)$		

matrix least-squares refinement, with all non- H atoms anisotropic, was performed, minimizing $\sum\left[w\left(\left|F_{o}\right|-\mid F_{c}\right)^{2}\right]$, where $w=\left[\sigma^{2}\left(F_{o}\right)+0.005 F_{o}^{2}\right]^{-1}$. A total of 125 parameters were refined. Refinement converged to final $R=0.043, w R=0.049$ and $S=$ 0.818 ($R=0.083, w R=0.0949$ and $S=1.23$ for all data). Inspection of F_{c} and F_{o} values indicated a need for a correction for secondary extinction, $F_{\text {corr }}=$ $F_{c} /\left|1.0-10^{-4} \chi F_{c}^{2} / \sin \theta\right|$, where $\chi=0.0239$ in the final run. Final $(\Delta / \sigma)_{\text {max }}=0.03 ; \Delta \rho_{\text {min }}=-0.36$ and $\Delta \rho_{\text {max }}=0.27 \mathrm{e} \AA^{-3}$ in the final difference map. Atomic scattering factors for non-H atoms were taken from Cromer \& Mann (1968) with corrrections for anomalous dispersion from Cromer \& Liberman (1970); those for H atoms were taken from Stewart, Davidson \& Simpson (1965). Most of the calculations were performed on MicroVAX II computer at the Departamento de Física de la Universidad Nacional de La Plata; programs used were SHELX 76 (Sheldrick, 1976), SHELXS86 (Sheldrick, 1985) and ORTEP (Johnson, 1965). Fractional atomic parameters with equivalent isotropic thermal
parameters for the non-H atoms are given in Table 1.* The numbering scheme is shown in Fig. 1. The molecules pack in the unit cell in the manner shown in the stereoscopic diagram of Fig. 2. Table 2 shows selected bond lengths and angles within the molecule.

Related literature. This is the fourth 2,3-benzothiazine we have structurally characterized (Rivero, Bianchet \& Bravo, $1991 a, b$, 1993). The SO_{2} group geometry $\left[\mathrm{O}-\mathrm{S}-\mathrm{O} \quad 118.6(2)^{\circ}\right], \quad \mathrm{S}-\mathrm{C}$ distance [1.760 (4) \AA] and deviations from planarity of the heterocyclic ring are in agreement with those of previously studied structures in this series and with the values reported for related compounds, such as β-sulphanilamide (O'Connell \& Maslen, 1967) and sulthiame, containing a thiazine ring without fused benzene (Aupers, Carlisle \& Lindley, 1974; Camerman \& Camerman, 1975). However, the S-N distance $[1.613$ (4) \AA] is closer to that in the unsubstituted compound [1.603 (4) \AA (Rivero, Bianchet \& Bravo, 1991a)] and smaller than those in the other compounds with substitution of the H atom on the

[^1]Fig. 1. Perspective drawing of the title compound indicating the atom labeling. Thermal ellipsoids are drawn at the 50% probability level.

Fig. 2. Stereoscopic view of the unit cell. Thin lines represent the hydrogen bonds between molecules.

N atom $\{[N$-methyl and 3-(p-chlorophenyl)]-3,4-dihydro-1H-2,3-benzothiazine 2,2-dioxide, 1.634 (6) and 1.641 (4) \AA, respectively (Rivero, Bianchet \& Bravo, $1991 b, 1993)\}$. The $\mathbf{S}-\mathrm{N}$ length is considerably shorter than the normal single-bond value of 1.67-1.68 \AA, which indicates electron delocalization within the SN group. A search of the July 1991 edition of the Cambridge Structural Database (Allen, Kennard \& Taylor, 1983) showed that no other 2,3-benzothiazine structures have been reported. However, 1,2-benzothiazines are relatively common (Kojić-Prodić \& Ružić-Toroš, 1982; Norris, Berke \& Lombardino, 1985; Golič \& Leban, 1987).

This work has received partial support from CONICET and CICPBA, Argentina, and from CNPq, Brazil, through a CONICET-CNPq exchange program. The utilization of National Cancer Institute, Frederick Cancer Research Facility, Advanced Scientific Computing Laboratory (ASCL) facilities for the Cambridge Structural Database search is gratefully acknowledged.

References

Allen, F. H., Kennard, O. \& Taylor, R. (1983). Acc. Chem. Res. 16, 146-153.

Aupers, J., Carlisle, C. H. \& Lindley, P. F. (1974). Acta Cryst. B30, 1228-1233.
Camerman, N. \& Camerman, A. (1975). Can. J. Chem. 53, 2194-2198.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Golič, L. \& Leban, I. (1987). Acta Cryst. C43, 280-282.
Hamliton, W. C. (1959). Acta Cryst. 12, 609-610.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Koisć-Prodić, B. \& Ružıć-Toroš, Ž. (1982). Acta Cryst. B38, 2948-2951.
Norris, C. P., Berke, H. \& Lombardino, J. G. (1985). J. Heterocycl. Chem. 22, 837-840.
O'Connell, A. M. \& Maslen, E. N. (1967). Acta Cryst. 22, 134-145.
Orazi, O. O., Corral, R. A. \& Bravo, R. D. (1986). J. Heterocycl. Chem. 23, 1701-1708.
Rivero, B. E., Bianchet, M. A. \& Bravo, R. D. (1991a). Acta Cryst. C47, 2501-2503.
Rivero, B. E., Bianchet, M. A. \& Bravo, R. D. (1991b). Acta Cryst. C47, 2674-2676.
Rivero, B. E., Bianchet, M. A. \& Bravo, R. D. (1993). Acta Cryst. C49, 544-546.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1985). SHELXS86. In Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. GodDaRD, pp. 175-189. Oxford Univ. Press.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1993). C49, 548-550

Structure of 4-Methylpyridinium Bromide

By Maria T. Andras* and Aloysius F. Hepp \dagger
National Aeronautics and Space Administration, Lewis Research Center, Photovoltaic Branch, MS 302-1, Cleveland, Ohio 44135, USA
Phillip E. Fanwick \dagger
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA

and Robert A. Martuch and Stan A. Duraj \dagger
Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115, USA

(Received 9 December 1991; accepted 25 June 1992)

Abstract

Picolinium bromide, $\left[\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NH}\right] \mathrm{Br}, M_{r}=$ 174.05, monoclinic, $C m, a=8.785$ (4), $b=8.318$ (3), $c=4.920(1) \AA, \beta=103.62(3)^{\circ}, V=349.4$ (4) \AA^{3}, Z $=2, D_{x}=1.654 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Мо $K \alpha)=0.71073 \AA, \mu$ $=57.23 \mathrm{~cm}^{-1}, F(000)=172, T=293 \mathrm{~K}, R=0.033$

^[* This work was performed while the author held a National Research Council-NASA Research Associateship. \dagger Address correspondence to these authors.]

for 415 reflections with $F_{o}^{2}>3 \sigma\left(F_{o}^{2}\right)$ and 41 variables. The compound consists of $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NH}^{+}$cations and Br^{-}anions. Both species reside on crystallographic mirror planes defined by the $\mathrm{Br}, \mathrm{N}(1), \mathrm{C}(4)$, $\mathrm{C}(7)$ and $\mathrm{H}(71)$ atoms. The $\mathrm{Br}-\mathrm{N}$ distance is 3.12 (1) Å.

Experimental. The title compound was prepared in the following manner. Under argon, a solution of

[^1]: * Lists of structure factors, least-squares planes, H -atom parameters, anisotropic thermal parameters and torsion angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55560 (12 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England. [CIF reference: GR0195]

